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Abstract. A traditional Regge model with a Q2-independent Pomeron intercept closed (or equal) to one
is constructed in order to describe the available data on the proton structure function. A Dipole Pomeron
model which does not explicitly violate unitarity is developed and investigated. An excellent agreement with
the 1209 data is found (χ2/dof = 1.11) in the whole kinematical domain investigated by experiments. A
comparison of the model with already existing ones is made. The x−, Q2−slopes and the effective intercept
are discussed as Q2 and x functions.

1 Introduction

The smooth transition between non-perturbative (soft po-
meron and Reggeons) and perturbative (QCD evolution,
hard pomeron) behaviour was studied and discussed in
a number of original papers and reviews (e.g. [1,2]). Im-
portant questions remain, however, unresolved about the
kinematical region (in Q2, x-plane) in which the above ap-
proaches can be applied as well as about the region of their
interference. In particular:

i) How large are the corrections to the DGLAP [3] evo-
lution equation where the Q2-evolution is usually con-
sidered in the leading logQ2 approximation [4,5]?

ii) How large are the corrections to BFKL- or hard- po-
meron [6]? What is their influence on the structure of
the singularities in the j-plane, on the position of the
rightmost singularity and on its intercept [4,5,7]?

iii) What do we know about unitarity in lepton-hadron
Deep Inelastic Scattering (DIS)? How important are
the shadowing corrections (SC) to the hard pomeron at
small values of x [4,5,8,9]? Does the Froissart-Martin
bound for hadronic total cross-sections remain valid
for γp-interaction?

iv) What are the domains in Q2 and x where a Regge
description of the structure functions (SF) can be ap-
plied?

Detailed discussion may be found in the above quoted
papers and references therein; here we briefly review the
main conclusions known so far.

I) The experimental data on the deep inelastic SF are
successfully described by the DGLAP evolution equa-
tion without any new ingredients [10–12] providing an

initial structure function F
(0)
2 ∝ x−ω0 at x → 0 with

ω0 ≈ 0.2−0.3. We note that an important point in this
approach is the choice of starting Q2 value at which
the input is defined. This value (usually ∼ 1−4 GeV2)
is taken on a phenomenological ground and is justified
a posteriori. At the same time in the HERA kinemat-
ical region the next order corrections are believed to
be important [4,5]. From this point of view a good
agreement of perturbative results with the data can
be considered more strange than natural.

II) As shown recently [7], the correction δω to the ”Born”
intercept of the BFKL Pomeron

α
(0)
P (0) − 1 = ω0 = 3Nc(αs/π) ln 2 ≈ 0.397,

calculated in the first order in αs(≈ 0.15), is large and
negative. More precisely, in accordance with estimates
made in [7]

ω = ω0 + δω ≈ 0.0747 if αs = 0.15 ,

ω ≈ 0.214 if αs = 0.081 .

The authors of [7] conclude that the BFKL Pomeron
and its next to leading approximation can be used
only for rough estimates rather than for ”precise” phe-
nomenology.

III) Quantitative estimates of unitarity, shadowing correc-
tions to structure functions as well as to parton dis-
tribution functions depend on additional assumptions
within a specified procedure of unitarization. However,
numerical estimates of SC originated from short dis-
tances show [8,13] that the effects are not small though
they do not change qualitatively the behaviour of stru-
cture functions at least at moderate Q2 and when
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x∼< 10−2. As for the unitarity condition in DIS, there
is a common belief that the Froissart-Martin bound
can not be proved for a process including ”external”
off-mass-shell particles. Nevertheless, as shown in [14],
some restrictions on the values of the intercepts can be
obtained on the ground of unitarity. We shall return
to this subject below.

IV) In accordance with a widely accepted point of view,
a soft contribution to the proton structure function
F p

2 dominated by the pomeron works only at small
Q2. The basis of this belief is that at fixed Q2 (larger
than a few units of GeV2) a simple fit (without any
subasymptotic term which could be important here)
gives F p

2 ∼ x−δ where δ ≈ 0.2 − 0.4 and δ is rising
with Q2.

The visible dependence of δ on Q2 was used in the
CKMT [15] and ALLM models [16,17] where a pomeron
with an intercept depending on Q2 was introduced.

Besides, a two pomerons model [18] and other mod-
els were proposed which smoothly interpolate between a
soft and a hard Q2−dependence [19] or combine these be-
haviours [20]. Of course, such a picture for the pomeron
does not correspond to a true Regge singularity. It contra-
dicts the main properties of simple Regge poles, namely
factorization and universality (we mean that the ”pome-
ron propagator” (−is/s0)αP(t) does not depend on exter-
nal particles coupled with pomeron). Rather it can be con-
sidered as an effective contribution taking into account
possible multipomeron exchanges. It would be interesting
and important to find a justification by directly summing
the multipomeron terms for example by an eikonal or a
quasieikonal method.

Let us come back to the result of [14]. Because of uni-
tarity, two kinds of singularity of the amplitude are pos-
sible: Regge singularities, those trajectories α(t) are, nat-
urally, Q2-independent; and Renormalization Group sin-
gularities which can depend on Q2. From unitarity, the
inequality

α(Q2) − 1 < α(0) − 1

follows.
In spite of the above mentioned belief on the validity of

a ”non-hard pomeron” description of DIS data, restricted
to small and moderate Q2, many models of a soft pomeron
contribution to F p

2 [20–25] were constructed and proved
to be successful at small x (∼< 10−2) and in a wide region
of Q2.

It is interesting to note that in most of them

F p
2 (x, Q2) −→

x→0
f(Q2) ln(

1
x

) ∼= f(Q2) lnW 2,

where
W 2 = Q2(

1
x

− 1) + m2
p

(mp is the proton mass). Such a behaviour corresponds
exactly to the contribution of a double j-pole f(Q2)/(j −
1)2 to the partial amplitude of γ∗p −→ γ∗p, where f(Q2)
is the residue function of the given reggeon (or pomeron).
In hadronic models for elastic scattering, this singularity

is known as a Dipole Pomeron (DP) with a trajectory
αP(t), having unit intercept, αP(0) = 1. As was shown in
[26,27] the Dipole Pomeron model gives rise to the ”best”
description (in sense of χ2) of the experimental data on
the total cross section and ρ−ratio for nucleon-nucleon
scattering (pp and p̄p) as well as for meson-nucleon.

All this leads support to our present efforts to answer
the following question. Is it possible, keeping a pure Regge
picture, to extend the area of validity of the soft pomeron?

Taking into account the results of different ”soft” mod-
els successfully applied at small [21,22,24,28] and at mod-
erate Q2 [21–24] one expect that the main difficulty should
be the description of the data at large x rather than at
large Q2.

2 The model

As natural in a Regge approach, we deal with amplitudes
and cross-sections rather than with structure functions.
Therefore, we start from the expression connecting the
transverse cross-section σT (W, Q2) for the (γ∗, p) process
to the proton SF F p

2 (x, Q2)

σγ∗p
T (W, Q2) =

4π2α

Q2

1
1 − x

(1 +
4m2

px
2

Q2 )

× 1
1 + R(x, Q2)

F2(x, Q2) , (1)

where we recall the negative squared four-momentum tra-
nsfer carried by the virtual photon Q2, the Björken vari-
able x and the center of mass energy of the γ∗p system W
obey the condition

W 2 = Q2 1 − x

x
+ m2

p ;

here α is the fine structure constant and

R(x, Q2) =
σL(x, Q2)
σT (x, Q2)

.

Unfortunately, the longitudinal cross-section σL is po-
orly known and one only knows that R(x, Q2) is small (at
least at small Q2 and x). In what follows we approximate

R(x, Q2) = 0,

(i.e. the total and transverse cross-sections are supposed
to be the same). Thus, we use the expression

F p
2 (x, Q2) =

1
4π2α

a(x, Q2)σγ∗p
T (W, Q2) , (2)

with

a(x, Q2) =
Q2(1 − x)

1 + 4m2
px

2/Q2 . (3)

From the optical theorem

σγ∗p
T (W, Q2) = =m

[
A(W 2, t = 0, Q2)

]
(4)
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Fig. 1. Experimental data for σγ∗p
T versus Q2 at

fixed W ’s showing a power decrease at high Q2

we normalize elastic scattering amplitude A(W 2, t, Q2)
with the external photons γ∗ off mass shell. Thus

F p
2 (x, Q2) =

1
4π2α

a(x, Q2) =mA(W 2, t = 0, Q2). (5)

The Regge model says nothing about the Q2-dependence
of the amplitude. The data (Fig. 1), however, suggest a
power-like decrease of the cross-section at fixed W .

In the amplitude we take into account the contribu-
tions of a pomeron and of a secondary reggeon (f -regge-
on).

A(W 2, t = 0, Q2) = P (W 2, Q2) + F (W 2, Q2). (6)

Strictly speaking, an a2-reggeon should also contribute to
the γ∗p-amplitude (and is expected to be important at
low energy). We do not include it in the fit to avoid extra
free parameters and therefore we fit the model only in the
region W ≥ 3 GeV.

The f-reggeon contribution is written

F (W 2, Q2) = iGf (Q2)
(

− i
W 2

m2
p

)αf (0)−1

(1 − x)Bf (Q2)
,

(7)
where we take

Gf (Q2) =
gf(

1 + Q2/Q2
f

)Df (Q2) ,

Df (Q2) = df∞ +
df0 − df∞

1 + Q2/Q2
fd

, (8)

Bf (Q2) = bf∞ +
bf0 − bf∞

1 + Q2/Q2
fb

. (9)

As for the pomeron contribution, we take it in the form

P (W 2, Q2) = P1 + P2, (10)

with

P1 = iG1(Q2)P(W )(1 − x)B1(Q2),

P2 = iG2(Q2)(1 − x)B2(Q2), (11)

Gi(Q2) =
gi

(1 + Q2/Q2
i )

Di(Q2) ,

Di(Q2) = di∞ +
di0 − di∞

1 + Q2/Q2
id

, i = 1, 2, (12)

Bi(Q2) = bi∞ +
bi0 − bi∞

1 + Q2/Q2
ib

, i = 1, 2. (13)

We would like to comment the above expressions. In
spite of a seeming cumbersome form they are a direct gen-
eralization of the simplest parameterization of factors

G(Q2) =
g

(1 + Q2/Q2
0)d

and (1 − x)b

with constant d and b in each term of the γ∗p-amplitude.
A fit to experimental data shows that the parameters d
and b should depend on Q2.

Various models of the pomeron may be considered (via
P(W )), e.g.
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Table 1. Experimental data used in the fit of DP and SCP
models. Distribution of the partial χ2’s for each subset of data
is illustrated for the DP model

Experiment, Number Refs. χ2 in
quantity of points DP model
σT 99 [29] 122.79
(W ≥ 3 GeV) [30]

[31]
F p

2
(W ≥ 3 GeV)
H1 93 [32] 67.42
H1 193 [33] 108.05
H1 44 [34] 39.18
ZEUS 188 [35] 233.70
ZEUS 34 [36] 22.20
BCDMS 175 [37] 285.40
NMC 156 [38] 175.40
E665 91 [39] 95.40
SLAC 136 [40] 167.50
Total Np = 1209 χ2/d.o.f. = 1.11

– Dipole Pomeron (DP)

P(W ) = ln(−i
W 2

m2
p

), (14)

– Supercritical Pomeron (SCP)

P(W ) =
(

− i
W 2

m2
p

)αP (0)−1

, (15)

– ”Generalized” Pomeron

P(W ) = lnµ(−i
W 2

m2
p

), 0 ≤ µ ≤ 2. (16)

We only investigate the first two models with a soft
pomeron (here with an intercept close to one). In the DP
model, the intercept of the pomeron is αP(0) = 1, while
in the SCP model, the pomeron intercept is fixed at its
”world value” αP(0) = 1.0808. Note that our SCP model
is a generalization of the model by Donnachie and Land-
shoff [28] : we add in the amplitude a single term with a
unit intercept.

The parameters must obey some restrictions to avoid
unphysical situations (for example, the cross-section might
become negative if we do not constrain d2∞ ≥ d1∞). These
restrictions were taken into account when fitting (6-13) to
the available experimental data.

In Table 1 we show details on the set of experimen-
tal data used for the determination of the parameters to
analyze the properties of the model.

3 Results and discussion

3.1 Fit to the data

We performed a fit of the experimental data with the
two models: the Dipole Pomeron and the Supercritical

Table 2. Parameters obtained in the Dipole Pomeron model
and in the Supercritical Pomeron model

DP model SCP model
Parameters Value Value
P1-term
µ .10000E+01 (fixed)
αP(0) .10000E+01 (fixed) .10808E+01 (fixed)
g1(mb) .21898E-01 .10295E+00
Q2

1(GeV 2 .15400E+02 .88709E+01
Q2

1d(GeV 2) .17852E+01 .15329E+01
Q2

1b(GeV 2) .33435E+01 .99243E+01
d1∞ .13301E+01 .13026E+01
d10 .14370E+02 .89733E+01
b1∞ .21804E+01 .27830E+01
b10 .42596E+01 .42832E+01
P2-term
g2(mb) -.99050E-01 -.78055E-01
Q2

2(GeV 2 .34002E+02 .20269E+02
Q2

2d(GeV 2) .12327E+01 .22877E+01
Q2

2b(GeV 2) .20702E-01 .21626E-01
d2∞ − d1∞ .00000E+00 (fixed) .00000E+00 (fixed)
d20 .22607E+02 .72161E+01
b2∞ .24686E+01 .30767E+01
b20 .17023E+03 .25000E+03
F -term
αf (0) .80400E+00 (fixed) .71369E+00
gf (mb) .29065E+00 .18189E+00
Q2

f (GeV 2 .29044E+02 .22469E+02
Q2

fd(GeV 2) .54462E+00 .13003E+00
Q2

fb(GeV 2) .20656E+01 .49263E+01
df∞ .13554E+01 .12940E+01
df0 .75127E+02 .22533E+03
bf∞ .27239E+01 .32140E+01
bf0 .64713E+00 .00000E+00(fixed)
χ2/d.o.f. 1.11 1.15

Pomeron. In the DP model, the Reggeon intercept was
fixed at the value αf (0) = 0.804 obtained from hadronic
reactions [26,27]. As regards to the SCP model only the in-
tercept of Pomeron was fixed at the value αP(0) = 1.0808
(we consider a ”standard” soft Pomeron, though another
value of αP(0) was obtained in [26,27]).

The corresponding χ2 and the fitted parameters are
given in Tables 1, 2. Both models describe well the data.
In practice, they give plots which coincide in the region of
the fitted experimental data; they become different only
in the very far asymptotics or, as anticipated, at low W -
values. We plot σγ∗p

T (W, Q2) in Figs. 2, 3 and F p
2 (x, Q2)

in Figs. 4 – 7; our DP results are compared to ALLM ones
[17], recalculated after corrections of a few misprints [41].
In what follows we concentrate mainly on a discussion of
the DP model.
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is the number of the curve starting from the top).
Other notations are given in the figure

3.2 (γ, p) cross-section (at Q2 = 0)

In the DP model, from (5)-(14) we obtain

σγp
T (W ) = g1 ln

(
W 2

m2
p

)
+ g2 +

gf cos(
π

2
(αf (0) − 1))

(
W 2

m2
p

)(αf (0)−1)

. (17)

The existing data on the cross section for a real photon-
proton interaction are not precise enough to determine
unambiguously the coupling constants g1, g2, gf and the
intercept αf (0) (this is why we fixed the f-reggeon inter-
cept). The behaviour (mild rise) of σγp

T (W ) is shown in
Fig. 2.

We would like to comment on the properties of the
models we investigated at Q2 = 0. As usual in a multipara-
metric problem there are several minima of χ2. We found
one of them with χ2/d.o.f. = 1.07 which is significantly
better than in the one given here. In this solution, which
we did not retain, the values of σγ∗p

T ∼ 0.19 mb at the
HERA energies are slightly higher than the experimental
points. At the same time as noted in [43] an extrapolation
of the ZEUS BPC data to Q2 = 0 gives exactly this value
of σγ∗p

T .

3.3 Partial contributions to the (γ∗, p) cross section

Let us remark about the negative sign found for the pa-
rameter g2 (see Table 2). The same situation takes place

for pp and p̄p cross-sections [26,27], where a negative con-
tribution plays an important role for a good description of
the subasymptotic elastic scattering data. At low energy it
is compensated by the f -reggeon contribution and at high
energy by the rising term P1 of the pomeron contribution.

Possibly this negative term can take into account the
multipomeron exchanges contribution. An argument in fa-
vor of this point of view (rather than a proof) holds when
we consider the following simple model used in crude dis-
cussions .Let

A(1)(s, t) = i(aξ + b)e(R2+α′ξ)t, ξ = ln(−is/s0)

be the contribution of a double j−pole (the first term) and
of a simple pole (the second term) in the elastic scattering
amplitude. The amplitude of the two-pomerons exchange
in the eikonal approximation at t = 0 is

A(2)(s, 0) = −i
(aξ + b)2

32π(R2 + α′ξ)

≈ − i

8π
[ξα′(a/2α′)2 + (a/2α′)(b − R2a/2α′)],

in the high energy approximation. Thus for A(s, 0) =
A(1)(s, 0)+A(2)(s, 0) we find an energy dependence of the
form

A(s, 0) ≈ i(ãξ + b̃).

One can see that the new terms (ã, b̃) in A(s, 0) can be
respectively positive and negative by a natural choice of
the positive constants a, b.

In the SP model an interpretation of the constant term
is less clear, however its sign follows from the fit to data. In
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Fig. 4. Experimental data for the
proton structure function F p

2 (x, Q2)
at low Q2 and predictions in the
Dipole Pomeron model and in
ALLM model. All notations are
given in the figure

any case we think that due to complicated interference of
the positive terms (from F (x, Q2) and P1(x, Q2)) with the
negative term (from P2(x, Q2)), it is possible to describe
σγ∗p

T (W, Q2) and F p
2 (x, Q2) without a Q2-dependent po-

meron intercept.
In order to see how quickly the asymptotic regime is

reached in the DP model, we plot versus W in Fig. 8 the
ratios of contributions in the cross-section σγ∗p

T (W, Q2)

due to the subasymptotic terms F (W, Q2) and P2(W, Q2)
to the asymptotic one P1(W, Q2) at some fixed values of
Q2. One can see that the asymptotic domain (where P1
dominates) occurs for high W and moreover, is shifted
to even higher W ’s while Q2 rises. This proves that it
may be incorrect to draw conclusions on F p

2 in term of its
asymptotic contribution.
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3.4 Comparison with other models

As noted above, models with F p
2 ∝ ln(1/x) at x � 1, can

be interpreted as taking into account a Dipole Pomeron
(with a unit intercept) contribution to the SF. In Table 3
for two of them, namely BH [23] and ScSp [24], we com-
pare the quality of their description of the data (measured
here with χ2/(number of points)) with those obtained in
the DP (present work) and ALLM [17] models. The free
parameters in all models were (re)determined by fitting
our set of data (for each model we selected the kinemat-
ical region of W, Q2, x as indicated by the authors). For
ALLM and for our model we give the partial χ2-s.

Because we describe σγ∗p
T (orF p

2 ) in the whole kinemat-
ical region (the only restriction W > 3 GeV is imposed),
we can compare our model with the ALLM model [17]
(where the only restriction is W > 2 GeV). We obtain a
very small difference in the whole region where data exist,
though there is a quite different trend outside the experi-
mental range (see Figs. 2 – 7). Thus, future experiments at
lower x should be crucial to test the existing models and
as a guide for constructing more sophisticated models.

Table 3. Comparison of the quality of data description by
various models (measured here with χ2/(number of points) )

Kinematical N of ALLM ScSp BH DP
region points [17] [24] [23] model
W > 3 GeV 1209 1.061 - - 1.089
Q2 ≤ 350 GeV2 329 0.81 1.098 - 0.77
W ≥ 60 GeV
Q2 ≥ 5 GeV2 227 0.89 - 1.04 0.79
x ≤ 0.05

3.5 x−slope or ∂lnF p
2 (x, Q2)/∂ln(1/x)

The data suggest an interesting tendency in the behaviour
of F p

2 (x, Q2) at small x and rising Q2. It concerns the
sharp increase of F2 as x decreases for a large span of
Q2 values (sometimes called the HERA effect). When Q2

rises around Q2 ∼ 200 − 500 GeV2, the fast growth of
F p

2 with decreasing x slows down and as Q2 increases fur-
ther is reversed. This effect (let us call it damping of the
HERA effect) is very weak from the experimental point
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of view because lacking of a sufficient number of data at
high Q2. Nevertheless, one can see it (or simply constant
that it does not contradict the available experiments) e.g.
in the Fig. 7. In spite of the very qualitative character of
the experimental observation, the following quantitative
confirmation holds. The x-slope of the proton SF

Bx(x, Q2) = ∂ ln (F p
2 (x, Q2))/∂ ln(1/x), (18)

is strongly model dependent. As an example, we examine
Bx in three models for which the behaviour of the rise of
F2 with decreasing x can accommodate all existing data :
the Dipole Pomeron model (see above), the ALLM model
[17] and the recent model [44] (hereafter labeled LKP).
The asymptotic behaviour (when Q2 → ∞ and x � 1) of
this slope is successively

B(DP )
x (x � 1, Q2 → ∞) ≈ 1

ln(Q2/x)
,

B(ALLM)
x (x � 1, Q2 → ∞) ≈ ∆(Q2)

= a

(
1 − 1/ ln ln(

Q2

Λ2 )
)

,

B(LKP )
x (x � 1, Q2 → ∞) ≈ 1

2

√
γ1 ln ln

Q2

Q2
0

/ ln
x0

x
,

where a, Λ, Q0, γ1, x0 are parameters of the models. The
slope Bx(x, Q2) is plotted versus Q2 for the DP model in
Fig. 9(a) for several x’s as indicated. In Figs. 9(b,c) the
x−slope for the ALLM and LKP models is plotted for
comparison.

It should be noted that the x−slope, at the largest
experimental Q2, is far from asymptotics in all models.
Our DP model predictions differ strongly from those ob-
tained in the ALLM model, where the intercept ∆(Q2)
goes to a constant independent on x at Q2 → ∞, and from
those in the LKP model, where Bx rises infinitely when
Q2 → ∞. However in the domain of Q2 slightly above
the existing data, the DP and LKP models are in qualita-
tive agreement, together predicting a decreasing Bx. They
both predict the damping of the HERA effect, illustrated
by the presence of a maximum when plotting Bx versus
Q2 for a given low x (Fig. 9). New experimental data in
this kinematical region would certainly help to verify if
this phenomenon does exist at 100∼< Q2∼< 1000GeV 2.
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3.6 x− and W− slopes and ”effective intercept”

We would like to emphasize that an apparent contradic-
tion of the constant and ”small” pomeron intercept (=1)
in the DP model with the ”experimentally” established
conclusion about the ”high” (and rising with Q2) value
of δ(Q2), where δ is the power in a small-x behaviour of
the SF, F p

2 (x, Q2) ∝ x−δ(Q2), is not a real contradiction.
On the one hand, the conclusion is based on a simplified
fit that takes into account only the asymptotic contribu-
tion to the SF. On the second hand, the x−slope (18), i.e.
∂ lnF p

2 (x, Q2)/∂ ln(1/x), rather than an ”effective inter-
cept” was determined. To show the difference we define
the effective intercept ∆(eff) by rewriting F p

2 in the gen-
eral form

F p
2 (x, Q2) = G(Q2)

(
1
x

)∆(eff)(x,Q2)

, (19)

with
∆(eff)(x, Q2) = α

(eff)
P (x, Q2) − 1 . (20)

Note that ∆(eff)(x, Q2) = Bx(x, Q2) only if ∆(eff)(x, Q2)
in (19) does not depend on x, however in general an effec-
tive intercept does not coincide with x-slope.

Because there are three variables Q2, x, W 2 with only
two of them being independent, the SF can be considered
as a function of Q2 and W 2. Consequently a W−slope of
the proton SF

BW = ∂ lnF p
2 (W 2, Q2)/∂ lnW 2 (21)

as well as an effective intercept ∆(eff)(W 2, Q2) should be
defined. Again the difference between BW and ∆(eff) is
important if ∆(eff) depends on W 2.

One can see from Fig. 9 that x−slopes increase with
Q2 up to a few hundreds of GeV2. A similar growth of BW

is demonstrated in the Fig. 10a (the behaviour of BW in
the ALLM model is shown in the Fig. 10b for comparison).
A sharp growth of BW at large Q2 is due to the influence
of the factors (1 − x)Bi(Q2) in (7) and (11) which become
very important at Q2∼> W 2 (or x ≈ 1)). In both cases (Bx

and BW ) the subasymptotic terms P2 and F contribute
mainly in a wide region of Q2.

So we would like to stress once more that as follows
from the above arguments the preasymptotic contribu-
tions to the SF are important (at least for Dipole Pomeron
and Supercritical Pomeron models) even in the HERA
kinematical region.
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As concerned the effective intercepts, it follows from
(5)-(14) that in DP model at Q2 → ∞ and small fixed x

F p
2 (x, Q2) ≈ 1

4π2α
Q2G1(Q2) lnW 2

≈ 1
4π2α

Q2G1(Q2) ln(
Q2

x
).

Identifying with (19), one gets G(Q2) = 1
4π2αQ2G1(Q2)

and

∆(eff)(x, Q2) ≈ ln ln(Q2/x)
ln(1/x)

.

Thus in the Dipole Pomeron model the effective intercept
∆(eff)(x, Q2) is rising with rising Q2 and is decreasing
with decreasing x, at least for large Q2 and small x. Simi-
larly one can find that in the kinematical region W 2 � Q2

(x � 1) where P1-term dominates

∆(eff)(W 2, Q2) ≈ ln lnW 2

lnW 2 .

However we note that the effective intercept is not a very
convenient parameter for analysing the experimental data
because its definition is model dependent (see the factor
G(Q2) in (19)).

3.7 Q−slope or ∂F p
2 (x, Q2)/∂lnQ2

Recently, new low x data from HERA have been reported
[42,43] and discussed [17,44,45], concerning the logarith-
mic Q2 derivative of F p

2 (for brevity called Q−slope)

BQ(x, Q2) =
∂F p

2 (x, Q2)
∂ lnQ2 . (22)

A ”Q−slope effect” presented as a new phenomenon has
been attributed to these data, it is illustrated in Fig. 11:
the data exhibit a peak at Q2

0 ∼ 1−5 GeV2. Also shown in
the figure, are the results of a calculation within our DP
model, which is a pure Regge one; quite a good agreement
with the data for both sides of the peak is obtained.

The peak is currently interpreted as a transition re-
gion from a Regge behaviour (at Q2∼< Q2

0) to a pertur-
bative QCD regime (at Q2∼> Q2

0). However we emphasize
that such a value of Q2

0 is imposed by the specified selec-
tion of experimental points, or in other words with [44] by
the particular (experimentally constrained) path (Q2(x))
chosen on the surface representing BQ in the 3 dimen-
sions space. Consequently, an unbiased determination of
the transition region requires a study of the submits of this
surface and may yield Q2

0, depending on x, and very dif-
ferent from 1−5 GeV2 (it has been found Q2

0(x � 1) ∼ 40
GeV2 in [44]).
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In the mini-plot at the upper right corner of the Fig. 10
we show the data positions in a (x, Q2)-plane together
with a line Q2 = 3.1 · 103 x0.82 which is fitted to the data.
Solid line in the Fig. 10 corresponds to BQ calculated in
the DP model along this path.

Let us connect x and Q2 by some analytical depen-
dence Q2 = Q2(x) that lies within a physical region on
(x, Q2)-plane. This region is bounded by the condition

y =
Q2

x(s − m2
p)

≤ 1.

For HERA experiments, the c.m.s. energy is
√

s ≈ 300
GeV and this condition writes Q2 (in GeV2) < 9 · 104 x.
As examples, we have calculated also BQ(x, Q2) for two
arbitrary dependencies satisfying the above condition :
Q2 = 9 · 104 x1.1 and Q2 = 103x 0.7. The results are
given in Fig. 10 and show that the positions of the peaks
in x differ at least by an order of magnitude. By an ap-
propriate choice of the curve Q2(x) the difference can be
enforced. Thus, a peak indeed exists but its position is
strongly dependent on the choice of experimental data.
Undoubtedly, the Q−slope effect has to be investigated in
more details from the experimental and theoretical points
of view.

4 Conclusion

In our opinion the most interesting and important message
of that paper is the following. All available data on the
proton structure function at W > 3 GeV can be described
in the framework of the traditional Regge approach with
a soft pomeron and an appropriate Q2−dependence of the
residue function. It is not necessary for this aim to use an
high intercept similar to the ”Born” hard BFKL Pomeron
intercept or a Q2-dependent intercept. We find that the
main difficulty is the extension of the kinematical domain,
where the pomeron is successfully applied, from the small
x � 1 to the large x ∼ 1 rather than the choice of the
specified pomeron singularity (in the j-plane) and its in-
tercept. It means that the subasymptotic contributions
are extremely important not only at low W but also at
HERA energy and even at more high energies (for the DP
model it is illustrated in the Figs. 4,5).

We note that in the DP model the ”effective intercept”
rises infinitely when Q2 rises and goes to zero when x
decreases.

At the same time, the model predicts a new phenome-
non in the behaviour of the slope Bx(x, Q2). Namely the
observed rising growth of the x−slope of F p

2 , at small x
and high Q2, will come to stop and then will begin to de-
crease at highest Q2. This phenomenon corresponding to
a damping of the HERA effect requires a further investi-
gation.
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